Getting Started
Computing the Cubage
The cubage
function calculates the volume of a tree (cubage) using different cubing methods. It can handle both single trees and multiple trees in a dataset. The available cubing methods are Smalian
, Newton
and Huber
.
Cubing a Simple Tree
When cubing a single tree, you need to provide vectors of diameters (d) and heights (h) measured at different points along the tree stem. Diameters should be in centimeters, and heights should be in meters. The diameter at breast height (DBH) and total tree height (Ht) are essential inputs.
using ForestMensuration
# Diameters at different heights (cm)
d = [9.0, 7.0, 5.8, 5.1, 3.8, 1.9, 0.0]
# Corresponding heights (m)
h = [0.3, 1.3, 3.3, 5.3, 7.3, 9.3, 10.8]
# Calculate cubage using the Smalian method
cubage(Smalian, h, d)
Row | vt | v0 | vc | vr | vn | d | h | hc | aff | nff | qf |
---|---|---|---|---|---|---|---|---|---|---|---|
Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | |
1 | 0.0229254 | 0.00190852 | 0.0208751 | 0.0 | 0.000141764 | 7.0 | 10.8 | 9.3 | 0.551578 | 0.488267 | 0.719286 |
- vt: Total volume
- v0: Volume of the stump
- vc: Commercial bole volume
- vr: Residual volume above commercial limit
- vn: Volume of the top (cone)
- dbh: Diameter at breast height
- ht: Total tree height
- hc: Commercial height
- aff: Artificial form factor
- nff: Natural form factor
- qf: Form quotient
Including Bark Thickness
With the bark thickness value, it is possible to calculate the bark factor and total and commercial volumes without bark. Note: the provided thickness should be the 'single thickness' in centimeters. The function will convert it into 'double thickness'.
# Bark thickness at corresponding heights (cm)
bark = [0.9, 0.5, 0.3, 0.2, 0.2, 0.1, 0.0]
# Define a commercial diameter limit
diameter_limit = 4.0
# Calculate cubage using the Newton method, including bark thickness and diameter limit
cubage(Newton, h, d, bark, diameter_limit)
Row | vt | v0 | vc | vr | vn | d | h | hc | aff | nff | qf | k | vtwb | v0wb | vcwb | vrwb | vnwb |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | |
1 | 0.0130233 | 0.00190852 | 0.0109731 | 0.0 | 0.000141764 | 7.0 | 10.8 | 6.99231 | 0.313338 | 0.277372 | 0.719286 | 0.932515 | 0.0113249 | 0.00165962 | 0.00954201 | 0.0 | 0.000123276 |
Additional columns include:
- k: Bark factor
- : vtwb, v0wb, vcwb, vrwb, vnwb: Corresponding volumes without bark
Cubing Multiple Trees
To calculate cubage for multiple trees, organize your data in a DataFrame with columns for tree identifiers, heights, diameters, and optionally bark thickness.
using ForestMensuration
using DataFrames
# Sample data for multiple trees
data = DataFrame(
tree = [148, 148, 148, 148, 148, 148, 148, 222, 222, 222, 222, 222, 222, 222, 222, 222, 222, 222],
h = [0.3, 1.3, 3.3, 5.3, 7.3, 9.3, 10.8, 0.3, 1.3, 3.3, 5.3, 7.3, 9.3, 11.3, 13.3, 15.3, 17.3, 19.5],
d = [9.0, 7.0, 5.8, 5.1, 3.8, 1.9, 0.0, 16.0, 12.0, 11.6, 10.1, 9.4, 8.2, 7.0, 6.0, 4.0, 2.0, 0.0],
bark = [0.9, 0.5, 0.3, 0.2, 0.2, 0.1, 0.0, 1.2, 0.5, 0.3, 0.3, 0.2, 0.2, 0.3, 0.0, 0.0, 0.0, 0.0]
)
# Define a commercial diameter limit
diameter_limit = 2.5
# Calculate cubage for each tree using the Huber method
cubage(Huber, :tree, :h, :d, data, diameter_limit)
Row | tree | vt | v0 | vc | vr | vn | d | h | hc | aff | nff | qf |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Int64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | |
1 | 148 | 0.023353 | 0.00190852 | 0.0206984 | 0.000604364 | 0.000141764 | 7.0 | 10.8 | 8.66842 | 0.561867 | 0.497375 | 0.719286 |
2 | 222 | 0.106503 | 0.00603186 | 0.0993921 | 0.00084823 | 0.000230383 | 12.0 | 19.5 | 16.8 | 0.482918 | 0.493554 | 0.660833 |
Including Bark Thickness for Multiple Trees
Additionally, bark thickness values can be provided to calculate bark factors and volumes without bark.
# Calculate cubage including bark thickness
cubage(Huber, :tree, :h, :d, :bark, data, diameter_limit)
Row | tree | vt | v0 | vc | vr | vn | d | h | hc | aff | nff | qf | k | vtwb | v0wb | vcwb | vrwb | vnwb |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Int64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | |
1 | 148 | 0.023353 | 0.00190852 | 0.0206984 | 0.000604364 | 0.000141764 | 7.0 | 10.8 | 8.66842 | 0.561867 | 0.497375 | 0.719286 | 0.932515 | 0.0203074 | 0.00165962 | 0.017999 | 0.000525546 | 0.000123276 |
2 | 222 | 0.106503 | 0.00603186 | 0.0993921 | 0.00084823 | 0.000230383 | 12.0 | 19.5 | 16.8 | 0.482918 | 0.493554 | 0.660833 | 0.965238 | 0.0992267 | 0.00561978 | 0.092602 | 0.000790282 | 0.000214644 |
Fitting Linear Regressions
The regression
function automatically generates and evaluates multiple regression models based on the provided data. It explores various transformations of the dependent and independent variables, creating a comprehensive set of models for analysis.
Adjusting a Hypsometric Relationship
In forestry, hypsometric relationships model the relationship between tree height (h) and diameter at breast height (dbh). The regression function generates numerous models to find the best fit.
using ForestMensuration
using DataFrames
# Sample dataset with tree heights and diameters
data = DataFrame(
plot = ["A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A",
"B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B",
"C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C",
"D", "D", "D", "D", "D", "D", "D", "D", "D", "D", "D", "D", "D", "D", "D"],
h = [20.9, 19.6, 13.2, 23.3, 19.2, 16.2, 8.3, 19.7, 11.0, 24.0, 25.8, 28.2, 24.2, 26.2, 28.3,
14.4, 14.9, 15.6, 8.2, 22.1, 16.7, 22.3, 19.5, 15.9, 16.7, 24.5, 21.7, 23.8,
20.8, 17.7, 19.3, 16.7, 22.2, 18.6, 6.9, 22.3, 8.7, 22.1, 21.0, 23.5,
19.5, 19.7, 18.2, 13.9, 12.3, 14.5, 12.3, 18.6, 18.0, 17.4, 24.3, 22.8, 23.2, 23.5, 25.2],
dbh = [31.5, 30.0, 26.5, 31.0, 29.0, 26.5, 14.5, 28.8, 19.0, 31.5, 32.5, 33.8, 32.5, 33.3, 36.0,
24.0, 28.0, 23.0, 15.5, 31.0, 27.0, 29.0, 28.0, 26.0, 29.0, 30.0, 29.0, 30.5,
25.0, 26.8, 27.5, 26.0, 26.0, 25.8, 10.8, 27.0, 16.5, 26.5, 27.0, 26.3,
26.0, 25.5, 25.0, 23.5, 22.0, 23.0, 23.0, 26.0, 25.5, 27.5, 26.5, 26.5, 27.8, 26.0, 27.0]
)
# Perform regression analysis between height and diameter
models = regression(:h, :dbh, data)
492-element Vector{LinearModel}:
h = -2.4842 + 0.6487 * dbh + 0.005977 * dbh ^ 2
h = -26.5433 + 4.373 * log(dbh) ^ 2 - 128.4 * dbh ^ -1 + 2419.0 * dbh ^ -2
h = 57.2762 - 1335.0 * dbh ^ -1 + 8652.0 * dbh ^ -2
h = 157.3244 - 0.01234 * dbh ^ 2 - 123.6 * log(dbh) + 25.66 * log(dbh) ^ 2
h = -87.3282 + 0.001564 * dbh ^ 2 + 31.09 * log(dbh) + 2360.0 * dbh ^ -2
h = 33.7974 - 374.1 * dbh ^ -1
h = -93.5981 - 0.9571 * dbh + 11.0 * log(dbh) ^ 2 + 525.8 * dbh ^ -1
h = -16.632 + 3.346 * log(dbh) ^ 2
h = -46.5986 + 20.15 * log(dbh)
h = -159.8033 + 48.06 * log(dbh) + 564.4 * dbh ^ -1
⋮
dbh ^ 2 / (h - 1.3) = 134.678 + 4.77 * dbh - 19.67 * log(dbh) ^ 2 - 6344.0 * dbh ^ -2
dbh ^ 2 / (h - 1.3) = -63.893 + 1.922 * dbh + 1932.0 * dbh ^ -1 - 13460.0 * dbh ^ -2
dbh ^ 2 / (h - 1.3) = 19.927 + 0.7885 * dbh
dbh ^ 2 / (h - 1.3) = 429.0095 + 0.04163 * dbh ^ 2 - 107.9 * log(dbh) - 1689.0 * dbh ^ -1
dbh ^ 2 / (h - 1.3) = 4.3221 - 0.4626 * dbh + 4.575 * log(dbh) ^ 2
dbh ^ 2 / (h - 1.3) = 47.2955 + 0.005149 * dbh ^ 2 - 258.4 * dbh ^ -1
dbh ^ 2 / (h - 1.3) = 713.3716 + 5.465 * dbh - 221.5 * log(dbh) - 2430.0 * dbh ^ -1
dbh ^ 2 / (h - 1.3) = 685.7053 - 370.1 * log(dbh) + 54.29 * log(dbh) ^ 2 - 10760.0 * dbh ^ -2
dbh ^ 2 / (h - 1.3) = -16.9943 + 0.0001126 * dbh ^ 2 + 17.72 * log(dbh)
This generates 240 different models combining various transformations of h and dbh.
#number of fitted regressions
length(models)
492
Regression Selection Criteria
After fitting the models, you can evaluate and rank them based on specific criteria using the criteria_table
function.
# Evaluate models
best_models = criteria_table(models)
Row | model | rank | adjr2 | d | syx | aic | bic | significance |
---|---|---|---|---|---|---|---|---|
LinearMo… | Int64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | |
1 | log(h) = -1.4894 + 1.348 * log(dbh) | 17 | 0.729603 | 0.917946 | 13.9489 | 267.57 | 271.585 | 1.0 |
2 | h = -96.1659 + 34.02 * log(dbh) + 2613.0 * dbh ^ -2 | 20 | 0.729649 | 0.92076 | 13.9477 | 269.561 | 275.583 | 1.0 |
3 | log_minus(h - 1.3) = -2.0472 + 1.495 * log(dbh) | 21 | 0.729026 | 0.918973 | 13.9638 | 267.687 | 271.702 | 1.0 |
4 | h = -159.8033 + 48.06 * log(dbh) + 564.4 * dbh ^ -1 | 25 | 0.729505 | 0.920792 | 13.9514 | 269.59 | 275.612 | 1.0 |
5 | h = -5.7502 + 0.9352 * dbh | 26 | 0.727517 | 0.917983 | 14.0026 | 267.993 | 272.008 | 1.0 |
6 | log1p(h) = 0.7588 + 0.2064 * log(dbh) ^ 2 | 28 | 0.726995 | 0.919647 | 14.016 | 268.098 | 272.113 | 1.0 |
7 | log1p(h) = 4.9266 - 65.76 * dbh ^ -1 + 375.7 * dbh ^ -2 | 34 | 0.726429 | 0.921681 | 14.0305 | 270.212 | 276.234 | 1.0 |
8 | log(h) = 0.5413 + 0.2215 * log(dbh) ^ 2 | 35 | 0.725095 | 0.919865 | 14.0647 | 268.48 | 272.494 | 1.0 |
9 | log(h) = 4.9804 - 69.14 * dbh ^ -1 + 389.6 * dbh ^ -2 | 37 | 0.725409 | 0.921744 | 14.0567 | 270.417 | 276.439 | 1.0 |
10 | log_minus(h - 1.3) = 5.064 - 74.0 * dbh ^ -1 + 407.0 * dbh ^ -2 | 42 | 0.72357 | 0.921815 | 14.1037 | 270.784 | 276.806 | 1.0 |
# Evaluate models based on Adjusted R², Standard Error and chosing the 5 bests
best_5_models = criteria_table(models, :adjr2, :syx, best=5)
Row | model | rank | adjr2 | syx |
---|---|---|---|---|
LinearMo… | Int64 | Float64 | Float64 | |
1 | h = -35.3323 + 4.828 * log(dbh) ^ 2 + 1745.0 * dbh ^ -2 | 2 | 0.729676 | 13.947 |
2 | h = -96.1659 + 34.02 * log(dbh) + 2613.0 * dbh ^ -2 | 4 | 0.729649 | 13.9477 |
3 | log(h) = -1.4894 + 1.348 * log(dbh) | 6 | 0.729603 | 13.9489 |
4 | h = -159.8033 + 48.06 * log(dbh) + 564.4 * dbh ^ -1 | 8 | 0.729505 | 13.9514 |
5 | log1p(h) = -1.1303 + 1.255 * log(dbh) | 10 | 0.729334 | 13.9559 |
Selecting the Best Model
To select the best model based on the combined ranking you can simply use the criteria_selection
function:
# Select the top model
top_model = criteria_selection(models)
h = -96.1659 + 34.02 * log(dbh) + 2613.0 * dbh ^ -2
Plotting the Regression
You can visualize the regression model using the plot_regression
function.
# Plot the top model
plot_regression(top_model)
Predict
The predict
function. allows you to generate predicted values from a regression model on the original scale of the dependent variable. This is particularly useful when the model involves transformations of the dependent variable (e.g., logarithmic transformations). The function automatically applies the appropriate inverse transformations and corrections, such as the Meyer correction factor for logarithmic models.
# Returns the predicted values from the model on the original scale
h_pred = predict(top_model)
55-element Vector{Float64}:
23.839396334946976
22.449444919838996
19.046655226169193
23.380687056885154
21.499772962767707
19.046655226169193
7.239680599465139
21.307637639879843
11.245167159289501
23.839396334946976
⋮
15.446233283156385
18.543111236482176
18.03556588328393
20.0411325227971
19.046655226169193
19.046655226169193
20.33608673315981
18.543111236482176
19.546038496517237
The predict!
function extends this by adding the predicted values directly to your DataFrame. It creates new columns for the predicted and actual values, combining observed measurements with model predictions where data may be missing. This is especially useful in forest inventory datasets where certain tree attributes might not be measured for every tree, and predictions need to be filled in for these gaps.
# Automatically adds predicted and actual height columns to the provided DataFrame.
# This combines observed heights and predicted heights for trees with missing or unmeasured heights.
predict!(top_model, data)
# Firsts values of dataset
println(data[1:10, :])
10×5 DataFrame
Row │ plot h dbh h_predict h_real
│ String Float64 Float64 Float64? Float64
─────┼──────────────────────────────────────────────
1 │ A 20.9 31.5 23.8394 20.9
2 │ A 19.6 30.0 22.4494 19.6
3 │ A 13.2 26.5 19.0467 13.2
4 │ A 23.3 31.0 23.3807 23.3
5 │ A 19.2 29.0 21.4998 19.2
6 │ A 16.2 26.5 19.0467 16.2
7 │ A 8.3 14.5 7.23968 8.3
8 │ A 19.7 28.8 21.3076 19.7
9 │ A 11.0 19.0 11.2452 11.0
10 │ A 24.0 31.5 23.8394 24.0
Adjusting a Qualitative (Dummy) Hypsometric Relationship
If your data includes categorical variables (e.g., different plots or species), you can include them in the regression analysis.
# Perform regression including 'plot' as a categorical variable
qualitative_models = regression(:h, :dbh, data, :plot)
# Select the best model
top_qual_model = criteria_selection(qualitative_models, :adjr2, :syx, :aic)
log(h) = 0.9926 + 0.06795 * dbh + 0.04215 * plot: B + 0.2089 * plot: C + 0.1953 * plot: D
Plotting the Qualitative Regression
# Plot the top qualy model
plot_regression(top_qual_model)
Site Classification
The site classification enable you to evaluate and classify forest sites based on regression models relating tree height and age. These functions are particularly useful for assessing site productivity and quality by comparing observed data with expected values derived from well-calibrated models.
Calculating Site Classification
The site_classification
function calculates the expected dominant height at a given index age for each observation based on a fitted regression model. This is a key step in classifying the productivity of a forest site.
using ForestMensuration, DataFrames
# Create a DataFrame containing tree plot data
data = DataFrame(
plot = repeat(1:6, inner=5),
age = repeat([36, 48, 60, 72, 84], outer=6),
h = [13.6, 17.8, 21.5, 21.5, 21.8,
14.3, 17.8, 21.0, 21.0, 21.4,
14.0, 17.5, 21.2, 21.2, 21.4,
13.4, 18.0, 20.8, 20.8, 23.2,
13.2, 17.4, 20.3, 20.3, 22.0,
13.2, 17.8, 21.3, 21.3, 22.5]
)
# Fit a regression model to relate height (h) to age
reg = regression(:h, :age, data) |> criteria_selection
# Define the target index age (for example, 60 months)
index_age = 60
# Calculate the site classification values (site indices) for each observation
site_indices = site_classification(reg, data, index_age)
println("Site Classification Values:")
println(site_indices)
Site Classification Values:
[20.5, 20.4, 21.5, 20.7, 20.3, 21.1, 20.4, 21.0, 20.0, 19.6, 20.8, 20.1, 21.2, 20.3, 19.6, 20.4, 20.5, 20.8, 19.7, 22.8, 20.2, 20.0, 20.3, 19.1, 20.6, 20.2, 20.4, 21.3, 20.4, 21.5]
Calculating Dominant Height Classification
The hdom_classification
function uses the site classification values to predict the dominant height for each observation at the specified index age. This reverses the site classification process, allowing you to forecast tree heights based on site productivity.
# Now, compute the dominant heights for each observation using the site indices
dominant_heights = hdom_classification(reg, data, index_age, site_indices)
println("Dominant Height Values:")
println(dominant_heights)
Dominant Height Values:
[13.6, 17.8, 21.5, 21.5, 21.8, 14.3, 17.8, 21.0, 21.0, 21.4, 13.9, 17.5, 21.2, 21.2, 21.4, 13.5, 18.0, 20.8, 20.8, 23.2, 13.2, 17.4, 20.3, 20.3, 22.0, 13.2, 17.8, 21.3, 21.3, 22.5]
Generating a Site Table
The site_table
function creates a comprehensive site table and an associated site plot. This table shows the predicted dominant heights at various ages for different site index classes. You can specify a height increment (hi
) to define the granularity of the site classes.
# Generate the site table
analysis = site_table(reg, index_age)
5×6 DataFrame
Row │ age S_19.5 S_20.5 S_21.5 S_22.5 S_23.5
│ Float64 Float64 Float64 Float64 Float64 Float64
─────┼──────────────────────────────────────────────────────
1 │ 36.0 12.4 13.6 14.8 16.2 17.7
2 │ 48.0 16.8 18.0 19.2 20.4 21.8
3 │ 60.0 19.5 20.5 21.5 22.5 23.5
4 │ 72.0 20.6 21.4 22.1 22.9 23.6
5 │ 84.0 21.3 21.9 22.5 23.0 23.6
Plotting the Site Index
# Generate site plot
analysis.site_plot
Frequency and Statistical Functions
Creating Frequency Tables
The frequency_table
function creates frequency distributions for a vector of values, which is useful for analyzing the distribution of diameters or heights in your data.
# Frequency table for diameters using Sturges' formula for class intervals
frequency_table(data.dbh)
Row | LI | Xi | LS | fi | Fi | fri | Fri |
---|---|---|---|---|---|---|---|
Float64 | Float64 | Float64 | Int64 | Int64 | Float64 | Float64 | |
1 | 10.0 | 12.5 | 15.0 | 1 | 1 | 1.81818 | 1.81818 |
2 | 15.0 | 17.5 | 20.0 | 3 | 4 | 5.45455 | 7.27273 |
3 | 20.0 | 22.5 | 25.0 | 2 | 6 | 3.63636 | 10.9091 |
4 | 25.0 | 27.5 | 30.0 | 27 | 33 | 49.0909 | 60.0 |
5 | 30.0 | 32.5 | 35.0 | 19 | 52 | 34.5455 | 94.5455 |
6 | 35.0 | 37.5 | 40.0 | 3 | 55 | 5.45455 | 100.0 |
- LI: Lower class limit
- Xi: Class center
- LS: Upper class limit
- fi: Frequency count
- Fi: Cumulative frequency
- fri: Relative frequency (%)
- Fri: Cumulative relative frequency (%)
Specifying Class Width
You can specify the class width (hi) to customize the intervals.
# Frequency table for heights with class width of 4 meters
frequency_table(data.h, 4)
Row | LI | Xi | LS | fi | Fi | fri | Fri |
---|---|---|---|---|---|---|---|
Float64 | Float64 | Float64 | Int64 | Int64 | Float64 | Float64 | |
1 | 8.0 | 10.0 | 12.0 | 4 | 4 | 7.27273 | 7.27273 |
2 | 12.0 | 14.0 | 16.0 | 5 | 9 | 9.09091 | 16.3636 |
3 | 16.0 | 18.0 | 20.0 | 12 | 21 | 21.8182 | 38.1818 |
4 | 20.0 | 22.0 | 24.0 | 14 | 35 | 25.4545 | 63.6364 |
5 | 24.0 | 26.0 | 28.0 | 17 | 52 | 30.9091 | 94.5455 |
6 | 28.0 | 30.0 | 32.0 | 3 | 55 | 5.45455 | 100.0 |
Calculating Dendrometric Averages
he dendrometric_averages
function computes various dendrometric averages of a forest stand, providing insights into the stand structure and growth patterns.
# Calculate dendrometric averages for the dataset
dendrometric_averages(data.dbh, area=0.05)
Row | d₋ | d̅ | dg | dw | dz | d₁₀₀ | d₊ |
---|---|---|---|---|---|---|---|
Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | |
1 | 21.8401 | 26.5164 | 26.9182 | 27.2 | 26.5 | 33.62 | 31.1927 |
- d₋: Lower Hohenadl's diameter
- d̄: Mean diameter
- dg: Quadratic mean diameter
- dw: Weise's diameter (60th percentile)
- dz: Diameter of the tree with central basal area
- d₁₀₀: Mean diameter of the 100 largest trees per hectare (returns NaN if fewer than 100 trees)
- d₊: Upper Hohenadl's diameter
Estimating Heights Using a Regression Model
If you have a regression model (e.g., top_model from earlier), you can estimate the corresponding heights for each calculated diameter.
# Estimate heights for dendrometric averages using the regression model
dendrometric_averages(top_model, area=0.05)
Row | d₋ | d̅ | dg | dw | dz | d₁₀₀ | d₊ | h₋ | h̅ | hg | hw | hz | h₊ | h₁₀₀ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | |
1 | 21.8401 | 26.5164 | 26.9182 | 27.2 | 26.5 | 33.62 | 31.1927 | 14.2244 | 19.0631 | 19.4646 | 19.7446 | 19.0467 | 25.7336 | 23.558 |